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Chapter V. The Diagonalization Problem.

V.1 The Characteristic Polynomial.

The characteristic polynomial pA(x) of an n × n matrix is defined to be

pA(x) = det(A − xI) (x an indeterminate)

This is a polynomial in K[x]. In fact det(A − xI) is a polynomial combination of the
entries in (A − xI), so it follows that pA(x) does determine a polynomial in the single
unknown x; furthermore deg(pA) = n. Given a linear operator T : V → V on a finite
dimensional space V and a basis X we have

[T − xI]XX = [T ]XX − x In×n (n = dim(V ))

so we may define a characteristic polynomial for T in the obvious way.

pT (x) = det(T − xI) = det ([T ]XX − xIn×n) (x an indeterminate)

The discussions for operators and matrices are so similar that nothing is lost if we focus
on matrices for the time being.

Next observe what happens if we write out the characteristic polynomial pA,

(37) pA(x) = det(A − xI) = c0(A) + c1(A)x + . . . + cn(A)xn

In this formula the coefficients ci(A) are scalar-valued functions from M(n, K) → K.

1.1. Lemma. Each coefficient ck(A) in (37) is a similarity invariant on matrix space

ck(SAS−1) = ck(A) for all A ∈ M(n, K), S ∈ GL(n, K)

Furthermore, if we identify M(n, K) with n2-dimensional coordinate space Kn2

via the
correspondence A %→ (a11, . . . , a1n; . . . ; an1

, . . . , ann), each coefficient ci(A) is a polyno-
mial function of the matrix entries: there is a polynomial Fi ∈ K[x] = K[x1, . . . , xn2 ]
such that ci(A) = Fi(a11, a12, . . . , ann).
Proof: We have

det (S(A − xI)S−1) = det(SAS−1 − xSS−1) = det(SAS−1 − x I)

= c0(SAS−1) + c1(SAS−1)x + . . . + cn(SAS−1)xn ,

while at the same time

det (S(A − xI)S−1) = det(S)·det(A − xI)·det(S−1)

= det(A − xI) = c0(A) + c1(A)x + . . . + cn(A)xn

for all x ∈ K. Since these are the same polynomial in K[x] the coefficients must agree,
hence ci(SAS−1) = ci(A).

The polynomial nature of the coefficients as functions of A ∈ Kn2

follows because
det(A− xI) is a polynomial combination of entries (A− xI)ij ; the coefficients ck(A) are
then polynomial functions of the aij when like powers of the unknown “x” are gathered
together. !
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It is interesting to examine how the coefficients ck(A) are obtained from entries in A.
Starting from the original definition of the determinant in Chapter IV,

det(B) =
∑

σ∈Sn

sgn(σ) · (
n
∏

i=1

bi,σ(i)) ,

if we take B = A − xI we have

B = A − xI =

⎛

⎜

⎜

⎜

⎝

(a11 − x) a12 . a1n

a12 (a22 − x) . a2n
...

. . .
...

an1 . . (ann − x)

⎞

⎟

⎟

⎟

⎠

It is clear that the only template yielding a product b1,σ(1)...bnσ(n) involving xn is the
diagonal template corresponding to the trivial permutation σ = e; furthermore, in ex-
panding the product

∏

i(aii−x) we must take the “−x” instead of “aii” from each factor
to get the power xn. Thus cn(A) ≡ (−1)n is constant on matrix space (and certainly a
similarity invariant).

We claim that

det(A − xI) = (−1)nxn + (terms of lower degree)

= (−1)nxn + (−1)n−1Tr(A)xn−1 + . . . + det(A) · 1-(38)

To get the coefficient of xn−1 observe that a product
∏

i bi,σ(i) involving xn−1 must come
from a template having (n− 1) marked spots on the diagonal, but then all marked spots
must lie on the diagonal and we are again dealing with the diagonal template (for σ = e).
In expanding the product

∏

i(aii − x) we must now select the “−x” from n − 1 factors
and the “aii” from just one. Thus

cn−1(A) = (−1)n−1 ·
n
∑

i=1

aii = (−1)n−1Tr(A)

as in (38). Determining the other coefficients is tricky business, except for the constant
term which is

a0(A) = det(A)

This follows because every template yields a product that contributes to this constant
term. However if a template marks a spot on the diagonal we must select the “aii” term
rather than the “x” from that diagonal entry (aii − x). It follows that the constant term
in (38) is:

∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

ai,σ(i) = det(A)

as claimed. We leave discussion of other terms in the expansion (38) for more advanced
courses.

Factoring Polynomials. It is well known that if a nonconstant polynomial f(x) in
K[x] has a root α ∈ K, so f(α) =

∑n
i=0 ciαi = 0, then we can factor f(x) = (x−α)·g(x)

by long division of polynomials, with deg(g) = deg(f)−1. In fact, applying the Euclidean
algorithm for division with remainder in K[x]: if P, Q ∈ K[x] and deg(Q) ≥ 1 we can
always write

P (x) = A(x)Q(x) + R(x) (with remainder R ≡ 0 or deg(R) < deg(Q))
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Taking P to be any nonconstant polynomial in K[x] and Q = (x − α), we get f(x) =
A(x) · (x − α) + R(x) where R(x) is either the zero polynomial, or R(x) is nonzero with
deg(R) < deg(x − α) = 1 – i.e. R(x) is then a nonzero constant polynomial R = c1-. If
α ∈ K is a root of f , replacing x by α everywhere yields the identity

0 = f(α) = A(α)·(α − α) + R(α) = 0 + R(α) = R(α)

Since R = c1-, this forces R(x) ≡ 0 and f(x) = A(x)(x − α) with no remainder – i.e.
(x − α) divides f(x) exactly.

If α1 is a root of f we may split f(x) = (x − α1) · g1(x). If we can find a root α2

of g1(x) in K we can continue this process, obtaining f(x) = (x − α1)(x − α2) · g2(x).
Pushing this as far as possible we arrive at a factorization

f(x) =
s
∏

i=1

(x − αi) · g(x)

in which g(x) has no roots in K. We say that f splits completely over K if g reduces
to a constant polynomial, so that f(x) = c

∏n
i=1(x−αi). There may be repeated factors,

and if we gather together all factors of the same type this becomes

f(x) = c
r
∏

j=1

(x − αi)
mj (αi ∈ K)

The roots {α1, . . . , αr} are now distinct and the exponents mi ≥ 1 are their multiplici-
ties as roots of f(x); the constant c out front is the coefficient of the leading term cnxn

in f(x).

1.2. Corollary. A nonconstant polynomial f(x) ∈ K[x] can have at most n = deg(f)
roots in any field of coefficients K. More generally the sum of the multiplicities of the
roots in K is at most n.

Proof: If f, g ̸= 0 in K[x] (so they have well defined degrees) we know that

deg(f(x) + g(x)) = deg(f(x)) + deg(g(x))

But, deg (
∏r

i=1(x − αi)mi) =
∑r

i=1 mi, so

r = #(distinct roots) ≤ (m1 + . . . + mr) + deg(g) = deg(f) !

1.3. Exercise. If f(x), h(x) are nonzero polynomials over any field, explain why the
“degree formula”

deg(f(x)h(x)) = deg(f(x)) + deg(h(x))

is valid.

1.4. Exercise. Verify that if f(x) =
∏r

i=1(x − αi) · g(x) and g(x) has no roots in K,
then the roots of f in K are {α1, ..., αr}.
Note: Repetitions are allowed; f(x) might even have the form (x − α)r · g(x).)

1.5. Definition. The distinct roots {α1, . . . , αr} in K of a nonconstant polynomial and
their multiplicities are uniquely determined, and the set of roots is called the spectrum
of the polynomial f and is denoted by spK(f).

Over the field K = C of complex numbers we have:

1.6. Theorem (Fundamental Theorem of Algebra). If f is a nonconstant polyno-
mial in C[x] then f has a root α ∈ C, so that f(α) = 0.
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1.7. Corollary. Every non constant f ∈ C[x] splits completely over C, with

f(x) = c ·
r
∏

i=1

(x − αi)
mi where m1 + ... + mr = n

Proof: Since f has a root we may factor f = (x−α1) · g1(x). Unless g1(x) is a constant
it also has a root, allowing us to write f = (x − α1)(x − α2)g2(x). Continue recursively.
!

Over K = R or Q, things get more complicated and f(x) might not have any roots
at all in K. For example if f(x) = x2 + 1 over R, or f(x) = x2 − 2 over Q since Q

does not contain any element α such that α2 = 2 (there is no “square root of 2” in Q).
Nevertheless since R ⊆ C we may regard any f ∈ R[x] as a complex polynomial that
happens to have all real coefficients. All real roots α remain roots α + i0 in C (lying on
the real axis), but enough new roots appear in the larger field to split f completely as

f(x) = c ·
∏

(x − αi) with αi ∈ C

It is important to realize that the new non-real roots enter in “conjugate pairs.”

1.8. Lemma. If f(x) is nonconstant in R[x] and z = x + iy is a complex root when we
identify R ⊆ C and R[x] ⊆ C[x], then the complex conjugate z = x − iy is also a root.

Proof: There is nothing to prove if z is real (y = 0). Otherwise, recall that conjugation

Figure 5.1. Non-real roots of a polynomial with real coefficients come in conjugate pairs
z = x + iy and z = x − iy, mirror images of each other under reflection across the x-axis.

has the following algebraic properties.

z1 + z2 = z1 + z2 and z1z2 = z1z2

Then
zn = zn for all n ∈ Z and z ∈ C

Hence if 0 = f(z) =
∑

j=0 cjzj with cj real we have

(cjzj) = cj (zj) = cj z̄
j

and
0 = 0 = f(z) =

∑

j=0

(cjzj) =
∑

j=0

cj(z)
j

= f(z)

Hence, z is also a root in C. !

The real roots of f ∈ R[x] are not subject to any constraints; in fact, all the roots might
be real. The number of distinct non-real roots is always even.
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1.9. Example. If f ∈ K[x] is quadratic,

f(x) = ax2 + bx + c with a ̸= 0,

the quadratic formula continues to apply for all fields except those of “characteristic 2,”
in which 2 = 1 + 1 is equal to 0 (for insatnce K = Z2). Except for this, the roots are
given by:

Quadratic Formula: z± =
−b ±

√
b2 − 4ac

2a

If the
√

... fails to exist in K the proper conclusion is that f(x) has no roots in K. If
K = Q or R this formula gives the correct roots in C even if there are no roots in K.

Discussion: Complete the square. Adding/subtracting a suitable constant d we may
write

ax2 + bx + c = a(x2 +
b

a
x +

c

a
) = a [(x2 +

b

a
x + d) + ( c

a
− d)]

= a·(x2 +
b

a
x + d) + (c − ad)

To make x2 + (b/a)x + d a “perfect square” of the form (x + k)2 = (x2 + 2kx + k2), we
must take k = b/(2a) and d = k2 = (b2/4a2). Then c − ad = c − (b2/4a2), so that

0 = ax2 + bx + c = a(x +
b

2a
)

2
+ ( c

a
−

b2

4a2
) = a·(x +

b

2a
)

2
+ (4ac − b2

4a
)

This happens if and only if

a(x +
b

2a
)

2
= (b2 − 4ac

4a
)

if and only if

(x +
b

2a
)

2
=

b2 − 4ac

4a2

if and only if

x =
−b ±

√
b2 − 4ac

2a
!

1.10. Example. Here are some examples of factorization of polynomials.

1. x2 − 1 = (x − 1)(x + 1) splits over R, with two roots +1,−1 each of multiplicity
one. On the other hand x2 + 1 has no roots and does not split over R, but it does
split over C, with x2 + 1 = (x − i)(x + i).

2. x2 + 2x + 1 splits over R as (x − 1)2, but there is just one root, of multiplicity 2;

3. x3 − x2 + x − 1 has a root x = 1 in R. Long division yields a quadratic,

x3 − x2 + x − 1 = (x − 1)(x2 + 1)

Over R, there is just one root λ1 = 1 with multiplicity m(λ1) = 1; over C we get
x2 + 1 = (x + i)(x − i) so there are two more roots roots λ2 = i, λ3 = −i in the
larger field C.

4. x4 − 1 = (x2 − 1)(x2 + 1) = (x + 1)(x − 1)(x + i)(x − i).
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5. x3 + x + 1 has just one real root λ1 because it is a strictly increasing function of
x ∈ R, and since it goes to ±∞ as x → ±∞ it must cross the x-axis somewhere.
But λ1 is not so easy to write as an explicit algebraic expression involving sums,
products, quotients, and cube roots. Such formulas exist, but are algorithms with
possible branch points rather than simple expressions like the quadratic formula. A
numerical estimate yields the real root λ1 = −0.6823+i0. There is a conjugate pair
of complex roots λ2 = 0.3412 + 1.615 i and λ3 = 0.3412 − 1.615 i, which could be
found by (numerically) long dividing f(x) by (x − λ1) and applying the quadratic
formula to find the complex roots of the resulting quadratic.

V.2. Finding Eigenvalues.
If V is a finite dimensional vector space we say λ ∈ K is an eigenvalue for a linear
operator T : V → V if there is v ̸= 0 such that T (v) = λv. For any λ ∈ K the λ-
eigenspace is Eλ = {v ∈ V : (T − λI)v = 0}. This vector subspace is nontrivial if and
only if λ is an eigenvalue. The set of distinct eigenvalues is called the spectrum spK(T )
of the operator. When λ = 0 the eigenspace Eλ=0(T ) is just ker(T ) = {v ∈ V : T (v) = 0}
and when λ = 1 we get the subspace of fixed vectors Eλ=1(T ) = {v : T (v) = v}.

The connection with determinants now emerges: λ ∈ K is an eigenvalue if and only if

ker(T − λI) ̸= (0) ⇔ (T − λI) is singular ⇔ det(T − λI) = 0

Thus the eigenvalues are the roots in K of the characteristic polynomial pT ∈ K[x].

2.1. Definition. If T : V → V is a linear operator on a finite dimensional vector space
then spK(T ) is the set of distinct roots in K of the characteristic polynomial pT (x) =
det(T −xI). We define the geometric multiplicity of an eigenvalue to be dim(Eλ); its
algebraic multiplicity is the multiplicity of λ as a root of the characteristic polynomial,
so that pT (x) = (x − λ)m · g(x) and g(x) does not have λ as a root.

2.2. Lemma. Over any field K,

(algebraic multiplicity of λ) ≥ (geometric multiplicity)

Over K = C, the sum of the algebraic multiplicities of the (distinct) eigenvalues in
spC(T ) = {λ1, ..., λr} is m(λ1) + . . . + m(λr) = n = dimC(V ).

Proof: Every eigenspace Eλ is T -invariant because (T − λI)T (v) = T (T − λI)v = 0 for
v ∈ Eλ. This eigenspace has a basis of eigenvectors Xλ = {e1, . . . , ed}, with respect to
which

[T ]Xλ
=

⎛

⎜

⎜

⎜

⎝

λ 0
λ

. . .
0 λ

⎞

⎟

⎟

⎟

⎠

(diagonal). Extending Xλ to a basis X = {e1, ..., ed, ed+1, ...., en} for all of V , we get

[T ]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ
. . . ∗

0 λ

0 B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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which implies that

[T − x I]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ − x
. . . ∗

0 λ − x

0 B − λI

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2.3. Lemma. If A is of the form

A =

(

B D

0 C

)

where B and C are two square matrices, then det(A) = det(B) · det(C).

Proof: If B is m×m, a sequence of Type II and III row operations on rows R1, . . . , Rm

puts this block in upper triangular form; similar operations on rows Rm+1, . . . , Rn puts
block C in upper triangular form without affecting any of the earlier rows. The net result
is an echelon form A′ = [B′, ∗; 0, C′] for which detA′ = det(B′) · det(C′). Each of the
determinants det(A′), . . . , det(C′) differs from its counterpart by a ± sign; furthermore,
the same moves that put B and C in upper triangular form also put A in upper triangular
form when applied to the whole n×n matrix. We leave the reader to check that the sign
changes cancel and yield det(A) = det(B) · det(C). !

This can also be seen by noting that if a template contributes to det(A), every column
passing through block B must be marked at a spot in B; otherwise it would marked at a
spot below B, whose entry is = 0. Likewise for the rows that meet block C, so a template
contributes ⇔ it has the form in Figure 5.2.

Figure 5.2. If A is a block upper-triangular square matrix, then det(A) = det(B)·det(C)
and the only templates that contribute to det(A) are those whose marked spots lie entirely
within the blocks B and C.

Applying Lemma 2.3 we can complete the proof of Lemma 2.2. We now see that

pT (x) = det(T − x I) = (λ − x)m · Q(x) where Q(x) = det(B − x I)

Obviously deg(Q(x)) = n − m and pT (x) has λ as a root of multiplicity at least m, so
(algebraic multiplicity of λ) ≥ m = dim(Eλ) as claimed. !

It might still be possible for (x − λ) to divide Q(x), making the algebraic multiplicity

larger than dim (Eλ). A good example is A =

(

λ 1
0 λ

)

. The operator LA : R2 → R2

has dim (Eλ=1) = 1, but pT (λ) = (λ − x)2 so the algebraic multiplicity is 2.
The following example illustrates the complete diagonalization process.
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2.4. Example. Let T = LA : R3 → R3 with

A =

⎛

⎝

4 0 1
2 3 2
1 0 4

⎞

⎠

If X = {e1, e2, e3} is the standard basis in R3 we have [T ]XX = [LA]XX = A as in Exercise
4.13 of Chapter II, so

pA(x) = det(A − x I) = det

⎛

⎝

4 − x 0 1
2 3 − x 2
1 0 4 − x

⎞

⎠

= [(4 − x)(3 − x)(4 − x) + 0 + 0]− [(3 − x) + 0 + 0]
= −x3 + 11x2 − 39x + 45

We are looking for roots of a cubic equation. If you can guess a root α, then long divide
by x−α to get pT (x) = (x−α) · (quadratic); otherwise you will have to use a numerical
root-finding program. Trial and error reveals that x = 3 is a root and long division by
(x − 3) yields

−x2 +8x −15

x − 3) −x3 11x2 −39x +45
−x3 +3x2

8x2 −39x +45
8x2 −24x

−15x +45
−15x +45

0

Then

−x3 + 11x2 − 39x + 45 = (x − 3)(−x2 + 8x − 15)

= −(x − 3)(x − 5)(x − 3) = −(x − 3)2(x − 5) ,

so sp(A) = {3, 5} with algebraic multiplicities mλ=3 = 2, mλ=5 = 1. To determine the
eigenspaces and geometric multiplicities we must solve systems of equations.

Eigenvalue λ1 = 3: We must solve the matrix equation (A−3I)X = 0. Row operations
on [A − 3I | 0] yield

[A − 3I | 0] =

⎛

⎝

1 0 1 0
2 0 2 0
1 0 1 0

⎞

⎠→

⎛

⎝

1 0 1 0
0 0 0 0
0 0 0 0

⎞

⎠

Solutions: x2, x3 are free variables and x1 = −x3, so

X =

⎛

⎝

−x3

x2

x3

⎞

⎠ and Eλ=3 = ker(A − 3I) = R

⎛

⎝

0
1
0

⎞

⎠+ R

⎛

⎝

−1
0
1

⎞

⎠

Thus λ = 3 has geometric multiplicity dim (Eλ=5) = 2.

Eigenvalue λ2 = 5: Solve matrix equation (A−5I)X = 0. Row operations on [A−5I | 0]
yield

[A − 5I | 0] =

⎛

⎝

−1 0 1 0
2 −2 2 0
1 0 −1 0

⎞

⎠→

⎛

⎝

1 0 −1 0
0 1 −2 0
0 0 0 0

⎞

⎠
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Solutions: x3 is a free variable; x2 = 2x3, x1 = x3. So

X =

⎛

⎝

x3

2x3

x3

⎞

⎠ and Eλ=5 = ker(A − 5I) = R

⎛

⎝

1
2
1

⎞

⎠

Thus λ = 5 has geometric multiplicity dim (Eλ=5) = 1.
We showed earlier that the span M =

∑

λ∈sp(T ) Eλ(T ) of the eigenspaces of a linear
operator is actually a direct sum M = Eλ1

⊕ . . . ⊕ Eλr . In the present situation M =
Eλ=3 ⊕ Eλ=5 is all of V since the dimension add up to dim(V ) = 3. Taking a basis
Y = {f1, .., f3} that runs first through Eλ=3 = Rf1 ⊕Rf2, and then through Eλ=5 = Rf3,
we obtain a diagonal matrix

[T ]YY =

⎛

⎜

⎜

⎝

3 0 0

0 3 0

0 0 5

⎞

⎟

⎟

⎠

Once we have found the diagonalizing basis

Y = {f1 = (0, 1, 0), f2 = (−1, 0, 1), f3 = (1, 2, 1)}

we determine an invertible matrix Q such that QAQ−1 = [T ]YY = diag(3, 3, 5). To find
Q recall that

[T ]YY = [id]YX · [T ]XX · [id]XY = [id]YX · A · [id]XY = QAQ−1

Here [id]XY = Q−1 and [id]YX = [id]−1
XY, and by definition [id]YX is the transpose of the

coefficient array in the system of vector identities

f1 = [id] f1 = 0 + e2 + 0
f2 = [id] f2 = −e1 + 0 + e3

f3 = [id] f3 = e1 + 2e2 + e3

Thus,

Q−1 = [id]XY =

⎛

⎝

0 −1 1
1 0 2
0 1 1

⎞

⎠

and Q = (Q−1)−1 can be found efficiently via row operations.

⎛

⎝

0 −1 1 1 0 0
1 0 2 0 1 0
0 1 1 0 0 1

⎞

⎠→

⎛

⎝

1 0 2 0 1 0
0 1 1 0 0 1

0 0 1 1
2 0 1

2

⎞

⎠→

⎛

⎜

⎝

1 0 0 −1 1 −1

0 1 0 −1
2 0 1

2

0 0 1 1
2 0 1

2

⎞

⎟

⎠

Thus

Q =

⎛

⎜

⎝

−1 1 −1

−1
2 0 1

2
1
2 0 1

2

⎞

⎟

⎠
= 1

2

⎛

⎝

−2 2 −2
−1 0 1
1 0 1

⎞

⎠

and

QAQ−1 =

⎛

⎝

3 0 0
0 3 0
0 0 5

⎞

⎠

as expected. That completes the “spectral analysis” of A. !
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The same sort of calculations determine the eigenspaces in C2 when A ∈ M(n, R) is
regarded as a matrix in M(n, C).

2.5. Example. Diagonalize the operator LA : K2 → K2 where

A =

(

2 4
−1 −2

)

over C and over R (insofar as this is possible).

Discussion: The characteristic polynomial of A (or LA) is

pA(λ) = det

(

2 − λ 4
−1 −2 − λ

)

= −(2 − λ)(2 + λ) + 4 = −4 + λ2 + 4 = λ2

The only root (real or complex) is λ = 0 so spR(A) = spC(A) = {0}. Its algebraic
multiplicity is 2, but the geometric multiplicity dimK (Eλ=0) is equal to 1. The outcome
is the same over C and R.

Eigenvalue λ = 0. Here Eλ=0 = ker(A). Row operations on [A | 0] yield

(

2 − λ 4 0
−1 −2 − λ 0

)

→
(

2 4 0
−1 −2 0

)

→
(

2 4 0
0 0 0

)

Solutions: In solving (A − λI)X = AX = 0, x2 is a free variable and x1 = −2x2 so

X =

(

−2x2

x2

)

and Eλ=0 = K ·
(

−2
1

)

.

Since there are no other eigenvalues, the best we can do in trying to find a simple matrix
description [T ]YY is to take a basis Y = {f1, f2} that passes first through Eλ=0: let
f1 = (−2, 1) and then include one more vector f2 /∈ Kf1 to make a basis. We have

[T ]XX =

(

2 4
−1 −2

)

with respect to the standard basis X = {e1, e2} in K2 (recall Exercise 4.13 of Chapter
II). With respect to the basis Y = {f1, f2} the matrix has block diagonal form,

[T ]YY =

(

0 ∗
0 ∗

)

But this operator cannot be diagonalized by any choice of basis. !

2.6. Exercise. We have shown that there is a basis Y = {f1, f2} such that

A = [T ]YY =

(

0 a
0 b

)

1. Prove that b must be 0, so

A =

(

0 a
0 0

)

2. Explain how to modify the basis Y to get a new basis Z such that

[T ]ZZ =

(

0 1
0 0

)
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2.7. Example. The matrix

A =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(θ real)

yields an operator LA : R2 → R2 that you will recognize as a rotation counter clockwise
about the origin by θ radians. Describe its eigenspaces over R and over C.

Solution: Over either field we have

pA(λ) = det(A − λI) = det

(

cos(θ) − λ − sin(θ)
sin(θ) cos(θ) − λ

)

= ( cos(θ) − λ)
2

+ sin2(θ) = cos2(θ) + sin2(θ) − 2λ cos(θ) + λ2

= λ2 − 2λ cos(θ) + 1

This is zero only when

λ =
2 cos(θ) ±

√

4 cos2(θ) − 4

2
= cos(θ) ±

√

cos2(θ) − 1

= cos(θ) ± i
√

1 − cos2(θ) = cos(θ) ± i sin(θ) = e±iθ

The roots are non-real (hence a conjugate pair as shown earlier in Figure 5.1), and they
lie on the unit circle in C because |e±iθ| = sin2(θ) + cos2(θ) = 1 for all θ. When θ = 0 or
π we have λ = ±1 + i0 (real), and in this case A = I or −I. In all other cases A has no
real eigenvalues at all, but it can be diagonalized as

[LA]YY =

(

eiθ 0
0 e−iθ

)

for a suitably chosen complex basis Y = {f1, f2} in C2. To find it we need to determine
the eigenspaces of LA in C2.

Eigenvalue: λ1 = eiθ = cos(θ) + i sin(θ).

[A − λI] =

(

cos(θ) − eiθ − sin(θ)
sin(θ) cos(θ) − eiθ

)

=

(

−i sin(θ) − sin(θ)
sin(θ) −i sin(θ)

)

= sin(θ) ·
(

−i −1
1 −i

)

Now, (A − λI)X = 0 ⇔ BX = 0 where B =

(

−i −1
1 −i

)

. Row operations yield:

(

−i −1 0
1 −i 0

)

→
(

1 −i 0
1 −i 0

)

→
(

1 −i 0
0 0 0

)

Solutions: Here x2 is a free variable and x1 = ix2. So,

X =

(

ix2

x2

)

and Eλ1=eit = C ·
(

i
1

)

.

For λ1, (algebraic multiplicity) = (geometric multiplicity) = 1.

The discussion for the conjugate eigenvalue λ2 = e−iθ = cos(θ)− i sin(θ) is almost the
same, with the final result that Eλ=e−iθ = C · col(−i, 1) Combining these observations
we get

C2 = Eλ=eiθ ⊕ Eλ=e−iθ = C ·
(

i
1

)

⊕ C ·
(

−i
1

)

= Cf1 ⊕ Cf2
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Thus, with respect to the basis

Y = { f1 = col(i, 1), f2 = col(−i, 1) }

we have

[LA]YY =

(

eiθ 0
0 e−iθ

)

!

As mentioned, the span M =
∑

λ∈spK(A) Eλ is a direct sum Eλ1
⊕ . . . ⊕ Eλr and a

suitable chosen basis partially diagonalizes A, with matrix

[T ]YY =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1 ·Id1×d1
0

. . . ∗
λr ·Idr×dr

0 0 B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

To proceed further and determine the structure of the lower right-hand block B we
would have to develop the theory of nilpotent operators, generalized eigenspaces, and
the Jordan decomposition of a linear operator over C. We must leave all that for a
subsequent course. However the following observation can be useful.

2.8. Proposition. If dimK(V ) = n and T : V → V has n distinct eigenvalues in K,
then T is diagonalizable and V is the direct sum

⊕n
i=1 Eλi . of 1-dimensional eigenspaces.

Proof: Since
∑

λ∈sp(T ) Eλi is a direct sum and each λi has dim (Eλi) ≥ 1, the dimension
of this linear span must equal n, so V =

⊕

λi∈sp(T ) Eλi . !

In some sense (at least for complex matrices), the “n distinct eigenvalues condition”is
generic: If entries aij ∈ C are chosen at random, then with “probability 1” the matrix
A = [aij ] would have distinct eigenvalues in C, so the characteristic polynomial would
split completely into distinct linear factors

pA(x) = c ·
n
∏

i=1

(x − λi) .

Unfortunately, in many important applications the matrices of interest do not have n
distinct eigenvalues, which is why we need the more subtle theory of “generalized eigen-
values” developed in Linear Algebra II, as a backup when diagonalization fails.

V.3 Diagonalization and Limits of Operators.
We begin by defining limits lim

n→∞
An = A of square matrices over K = R or C; limits

Tn → T could similarly be defined for linear operators on a finite dimensional vector
space V over these fields.

3.1. Definition. For K = R or C we may define pointwise convergence, or “sup
norm convergence” of matrices in M(N, K)

lim
n→∞

An = A or An → A as n → ∞

to mean that each entry in An converges in C to the corresponding entry in the limit
matrix A:

(39) |a(n)
ij − aij|→ 0 in C as n → ∞

for each 1 ≤ i, j ≤ N , where An = [a(n)
ij ].
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Later we will examine other notions of matrix (or operator) convergence. In making the
present definition we are, in effect, measurng the “size” of an N ×N matrix by its “sup-
norm,” the size of its largest entry:

∥A∥∞ = max{ |aij | : 1 ≤ i, j ≤ N}

This allows us to define the distance between two matrices in M(N, K) to be d(A, B) =
∥A−B∥∞, and it should be evident that the limit An → A defined in (39) can be recast
in terms of the sup-norm:

(40) An → A as n → ∞ ⇔ ∥An − A∥∞ → 0 as n → ∞ .

The sup norm on matrix space has several important properties (easily verified):

3.2. Exercise. If A, B ∈ M(N, K) prove that:

1. ∥λA∥∞ = |λ| · ∥A∥∞, for all λ ∈ K,

2. Triangle Inequality: ∥A + B∥∞ ≤ ∥A∥∞ + ∥B∥∞;

3. Multiplicative Property: ∥AB∥∞ ≤ n · ∥A∥∞ · ∥B∥∞.

Hint: Use the Triangle Inequality in C, which says |z ± w| ≤ |z| + |w| for any z, w ∈ C

A number of theorems regarding sup-norm limits follow from these basic inequalities.

3.3. Exercise. If An → A and Bn → B in the sup-norm, and λn → λ in C, prove that:

1. An + Bn → A + B

2. AnB → AB and ABn → AB;

3. AnBn → AB. Thus matrix multiplication is a “jointly continuous” operation on
its two inputs.

4. If Q is an invertible matrix then QAnQ−1 → QAQ−1. Hence every similarity
transformation A %→ QAQ−1 is a continuous operation on matrix space.

5. λnAn → λA.

Hint: In (3.) add and subtract AnB, then apply the triangle inequality.

The triangle inequality has a “converse” that is sometimes indispensable.

3.4. Proposition (Reverse Triangle Inequality). For A, B ∈ M(N, K) we have

| ∥A∥∞ − ∥B∥∞ | ≤ ∥A − B∥∞

Proof: By the Triangle Inequality

∥A + B∥∞ ≤ ∥A∥∞ + ∥B∥∞

we get
∥A∥∞ = ∥A − B + B∥∞ ≤ ∥A − B∥∞ , +∥B∥∞

so that ∥A∥∞−∥B∥∞ ≤ ∥A−B∥∞. Reversing roles of A, B we also get ∥B∥∞−∥A∥∞ ≤
∥A−B∥∞. Since the absolute value of a real number is either |c| = c or −c, we conclude
that

| ∥A∥∞ − ∥B∥∞ | ≤ ∥A − B∥∞ !

As an immediate consequence we have

3.5. Corollary. If An → A in M(n, C) then ∥An∥∞ → ∥A∥∞ in R. !

3.6. Exercise. If A in M(n, C) is an invertible matrix and An → A in the sup-norm,
prove that
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1. det(An) → det(A);

2. A−1
n → A−1 in the sup norm.

Hint: Recall Cramer’s Rule for computing A−1 for a nonsingular matrix A.

Application #1: Computing the Exponential e
A of a Matrix. We

will show that the exponential series

eA =
∞
∑

k=0

1

k!
Ak (A ∈ M(N, C) )

converges in the sup-norm, which means that the finite partial sums of the series

Sn = I + A +
A2

2!
+ ... +

An

n!
n ∈ N

converge to a definite limit eA in matrix space:

∥Sn − eA∥∞ → 0 as n → ∞

This is not so easy to prove, but if D = diag(λ1, . . . , λN ) is a diagonal matrix

D =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .
0 λN

⎞

⎟

⎟

⎟

⎠

it is quite obvious that the partial sums Sn converge in the sup-norm,

Sn = I + D + . . . +
D

n

n!
=

0

B

B

B

B

B

B

B

@

1 + λ1 + . . . +
λ

n
1

n!
0

1 + λ2 + . . . +
λ

n
2

n!
. . .

0 1 + λN + . . . +
λ

n
N

n!

1

C

C

C

C

C

C

C

A

−→

0

B

B

B

@

e
λ1 0

e
λ2

. . .

0 e
λN

1

C

C

C

A

as n → ∞

because ez =
∑∞

k=0 zk/k! is absolutely convergent for every complex number z ∈ C.

Therefore Sn → eD in the sup-norm and

eD =
∞
∑

k=0

Dk

k!
= lim

n→∞
Sn =

⎛

⎜

⎜

⎜

⎝

eλ1 0
eλ2

. . .
0 eλN

⎞

⎟

⎟

⎟

⎠

A Digression: The Cauchy Convergence Criterion in Matrix Space. For ma-

trices that are not diagonal it is not easy to prove that there actually is a matrix eA to
which the matrix-exponential series converges in sup-norm,

∥Sn − eA∥∞ → 0 as n → ∞ .
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This follows because M(N, K) equipped with the sup-norm ∥ · ∥∞ has the following
completeness property, similar to completeness of Rn and Cn in the Euclidean norm

∥z∥2 = (
N
∑

k=1

|zk|2)
1/2

for z = (z1, . . . , zN) in CN ,

or completeness of the number fields K = R and C.

(41)

Theorem (Cauchy Convergence Criterion). A sequence {An} in
M(N, K) converges to some limit A0 = limn→∞An in the ∥ · ∥∞-norm if
and only if the sequence has the Cauchy property

∥Am − An∥∞ → 0 eventually as m, n → ∞

To be precise, this property means: Given any r > 0 we can find a cutoff
M > 0 such that

∥Am − An∥∞ < r for all m, n ≥ M

Statement (41) is much stronger than saying successive terms in the sequence get close,
with ∥An+1 −An∥ → 0 as n → ∞; to verify the Cauchy criterion you must show that all
the terms are eventually close together as n → ∞.

When you try to prove An → A0 by examining the distances ∥An − A0∥∞ you must
actually have the prospective limit A0 in hand, and that limit might be very hard to
guess. The Cauchy criterion gets around this problem. You don’t need to identify the
value of the limit whose existence is assured in (41), because the Cauchy criterion can be
verified by inspecting the terms of the given sequence {An}. Similarly in R, the Integral
Test of Calculus shows that the the partial sums

Sn = 1 +
1

22
+ . . . +

1

n2
of the Harmonic Series

∞
∑

n=1

1/n2

have the Cauchy property, and hence by the completeness property (41)

∞
∑

n=1

1

n2
= lim

n→∞
{Sn}

exists. It is a lot harder to identify this limit in “closed form,” and show it is exactly
π2/6. We will see one way to do this in Chapter VI.

As for the matrix exponential series
∑∞

n=0 Ak/k! we now show that its partial sums
Sn =

∑n
k=0 Ak/k! have the Cauchy property in ||·||∞-norm. By completeness of M(N, C)

the partial sums actually have a limit, which we name “eA”

eA =
∞
∑

k=1

Ak

k!
= lim

n→∞
Sn

Proof: To verify the Cauchy property for {Sn} we may assume m > n. By the Triangle
Inequality and the multiplicative property (3.) of Exercise 3.2 we have

∥Sm − Sn∥∞ = ∥
m
∑

k=n+1

Ak

k!
∥∞ ≤

m
∑

n+1

Nk∥A∥k
∞

k!
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By the Ratio Test the Taylor series for f(x) = ex converges (to ex) for all x ∈ R:

ex =
∞
∑

n=0

Dnf(0)

n!
xn =

∞
∑

n=0

xn

n!

because Dn{ex} = ex for all x. Taking x = N · ∥A∥∞, we get

n
∑

k=0

Nk∥A∥k
∞/k! →

∞
∑

k=0

Nk∥A∥k
∞

k!
= eN∥A∥∞ < ∞ as n → ∞ ,

hence for m ≥ n:

0 ≤ ∥Sm − Sn∥∞ ≤
m
∑

n+1

(N · ∥A∥∞)k

k!
=

∞
∑

k=n+1

(N · ∥A∥∞)
k

k!
→ 0

as n → ∞. Thus, {Sn} is Cauchy sequence for the ∥ · ∥∞-norm and the matrix-valued
series

∑∞
k=0 Ak/k! converges in ∥ · ∥∞-norm for every matrix A. !

In general, it is a difficult task to directly compute the sum of a convergent series
such as eA =

∑∞
n=0 An/n! For instance, consider how one might try to evaluate eA when

A =

(

1 −1
−6 2

)

Computing higher and higher powers Ak is computationally prohibitive, and how many
terms would be needed to compute each entry of eA with an error of at most 1 × 10−6

(6-place accuracy)?
As mentioned earlier, computing eA is easy if A = D = diag(λ1, . . . , λN ) is diagonal.

Then,

Sn = I + D + . . . +
Dn

n!
→

⎛

⎜

⎜

⎜

⎝

eλ1 0
0 eλ2

. . .
0 eλN

⎞

⎟

⎟

⎟

⎠

= eD

We now show that etA can be computed in closed form for all t ∈ R , for any A that
is diagonalizable over R or C.

3.7. Example. Compute etA (t ∈ R) for the matrix

A =

(

1 −1
−6 2

)

Solution: First observe that A is diagonalizable, with QAQ−1 =

(

4 0
0 −1

)

= D for

suitably chosen Q. The eigenvalues are the roots of the characteristic polynomial

pA(x) = det

(

1 − λ −1
−6 2 − λ

)

= (λ − 2)(λ − 1) − 6

= λ2 − 3λ + 2 − 6 = λ2 − 3λ − 4 = (λ − 4)(λ + 1) ,

so sp(A) = {4,−1}. The eigenspaces are computed by row reduction:
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• Eigenvalue λ = 4:

(A − λI) =

(

−3 −1
−6 −2

)

→

(

1 1
3

0 0

)

.

Solutions of (A − λI)X = 0 are

X ∈ K·
(

−1
3

1

)

= K·
(

1
−3

)

= Eλ=4 .

• Eigenvalue λ = −1:

(A − λI) =

(

2 −1
−6 3

)

→

(

1 −1
2

0 0

)

Solutions of (A − λI)X = 0 are X ∈ K ·
( 1

2
1

)

= K·
(

1
2

)

= Eλ=−1.

Thus K2 = Eλ=4 ⊕Eλ=−1 and Y = { f1 = (1,−3), f2 = (1, 2) } is a diagonalizing basis in
K2. On the other hand, from our discussion of “change of basis” in Chapter II we have

D =

(

4 0
0 −1

)

= [LA]YY = [id]YX · [LA]XX · [id]XY

= [id]YX · A · [id]XY

Since
{

f1 = e1 − 3e2

f2 = e1 + 2e2
(where X = {e1, e2} = standard basis in K2)

we see that [id]XY =

(

1 1
−3 2

)

. Then QAQ−1 = D taking Q−1 = [id]XY =

(

1 1
−3 2

)

,

and since det(Q−1) = 5 we get Q = (Q−1)−1 = 1
5 ·
(

2 −1
3 1

)

. Now

{

D = QAQ−1

A = Q−1DQ
⇒ Ak = (Q−1DQ)·(Q−1DQ) · . . . · (Q−1DQ) = Q−1DkQ

for k = 0, 1, 2 . . ., hence by (4.) of Exercise 3.3 we get

eA =
∞
∑

k=0

Ak

k!
=

∞
∑

k=0

(Q−1DQ)k

k!
=

∞
∑

k=0

Q−1DkQ

k!

= Q−1(
∞
∑

k=0

Dk

k!
) · Q = Q−1eDQ ,

We conclude that

eA = Q−1

(

e4 0
0 e−1

)

Q

which exhibits eA as a product of just three explicit matrices.
Similarly, for t ∈ R we compute etA

etA = Q−1

(

e4t 0
0 e−t

)

Q =

(

1 1
−3 2

)

·
(

e4t 0
0 e−t

)

·
1

5

(

2 −1
3 1

)

=
1

5

(

2e4t + 3e−t −e4t + e−t

−6e4t + 6e−t 3e4t + 2e−t

)

=
1

5
e4t ·

(

2 −1
−6 3

)

+
1

5
e−t ·

(

3 1
6 2

)
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Setting t = 0, we get e0 = I; setting t = 1, we get the answer to our original question

eA =
1

5
e4 ·
(

2 −1
−6 3

)

+
1

5
e−1 ·

(

3 1
6 2

)

!

Application #2: Solving Linear Systems of Differential Equations.

In the next application we see why one might want to compute the matrix-valued function
φ(t) = etA, φ : R → M(N, C). First we must sketch some additional properties of the
exponential map on matrices (mostly without proofs).

1. If A and B commute then

Exponent Law: eA+B = eA · eB

In particular, eA is always invertible, with (eA)−1 = e−A. Futhermore,

One-Parameter Group Law: e(s+t)A = esA · etA for all s, t ∈ R

and e−tA is the inverse of etA for t ∈ R.

Proof (sketch): We give an informal proof involving rearrangement of a matrix-valued
double series. But beware: rearrangement and regrouping of series are delicate matters
even for scalar-valued series, and a proof that would pass muster with analysts would
require considerably more detail – see any text on Mathematical Analysis.

The series eA =
∑∞

k=0 Ak/k! and eB =
∑∞

ℓ=0 Bℓ/ℓ! are sup-norm convergent. Ex-
panding the product of the two series term-by-term (which in itself requires some justi-
fication!) we get

eA · eB = (
∞
∑

k=0

Ak/k!) · (
∞
∑

ℓ=0

Bℓ/ℓ!) =
∑

k,ℓ≥0

1

k!

1

ℓ!
AkBℓ

=
∑

k,ℓ≥0

1

(k + ℓ)!
·
(k + ℓ)!

k!ℓ!
AkBℓ

=
∞
∑

n=0

1

n!
·(

n
∑

k=0

(
n

k)AkBℓ) where (
n

k) = (binomial coefficient)

=
∞
∑

n=0

1

n!
(A + B)n (Binomial Formula)

= eA+B
!

2. Differentiation Law. The derivative of φ(t) = etA exists and is continuous,
with

d

dt
(etA) = A·etA for all t ∈ R

Proof: Using the Exponent Law we get

d

dt
(etA) = lim

∆t→0

e(t+∆t)A − etA

∆t

= lim
∆t→0

(e(∆t)A − I

∆t
)·etA (since e(t+∆t)A = etA ·e(∆t)A)

= ( lim
∆t→0

e(∆t)A − I

∆t
) · etA
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Using the norm properties listed in Exercises 3.2 -3.3 it is not hard to show that

e(∆t)A − I = (I + (∆t)A +
(∆t)2

2!
A2 + ....) − I

= ∆t · (A +
(∆t)2

2!
A2 + ...) = ∆t(A + O(∆t))

where the matrix-valued remainder O(∆t) becomes very small compared to ∆t

∥O(∆t)∥∞
|∆t|

→ 0 as ∆t → 0 .

Thus,
e(∆t)A − I

∆t
=

∆t

∆t
(A + O(∆t)) → A

in the ∥ · ∥∞-norm as ∆t → 0, proving the formula. !

Any system of n first order linear ordinary differential equations in n unknowns can
be written in matrix form as

(42)
dy

dt
= A · y(y) with initial condition y(0) = c

where y(t) = (y1(t), . . . , yn(t)) is a vector-valued function of t, and the n × n matrix A
provides the coefficients of the system. It is well known that once the initial value c is
specified there is a unique infinitely differentiable vector-valued solution y(t) if we regard
y(t) as an n × 1 column vector. The solution can be computed explicitly as

(43) y(y) = etA · y(0) = etA ·c for t ∈ R

In fact,
dy

dt
=

d

dt
(etA · c) =

d

dt
(etA) · c = AetA · c = A · y(t) ,

and when t = 0 we get y(0) = c because e0·A = In×n. We must of course compute etA

to arrive at y(t) but we have seen how to do that in the previous example, at least when
the coefficient matrix can be diagonalized.

3.8. Example. If A =

„

1 −1

−6 2

«

determine the unique solution of the first order

vector-valued differential equation

dy

dt
= A · y(t) such that y0 = y(0) =

(

1
0

)

.

Likewise for the initial value y0 =

(

0
1

)

. Then find all solutions of

dy

dt
= A · y(t) for an arbitrary initial value y0 =

(

c1

c2

)

Solution: Earlier we found that

QAQ−1 =

(

4 0
0 −1

)

for Q =
1

5

(

2 −1
3 1

)
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and showed that

eA = eQDQ−1

= Q−1 ·eD ·Q =
1

5
e4 ·

(

2 −1
−6 3

)

+ e−1 ·
(

3 1
6 2

)

Taking etA in place of eA, we got (with little additional effort):

etA =
1

5
e4t ·

(

2 −1
−6 3

)

+
1

5
e−t ·

(

3 1
6 2

)

for all t ∈ R

Taking y0 = e1 = (1, 0) we get a solution:

y1(t) = etA(e1) =
1

5
e4t ·

(

2
−6

)

+
1

5
e−t ·

(

3
6

)

If y0 = e2 = (0, 1) we get another solution:

y2(t) = etA(e2) =
1

5
e4t

(

−1
3

)

+
1

5
e−t ·

(

1
2

)

For an arbitrary initial condition y(0) = c = c1e1 + c2e2, it is obvious that the
solution of dy/dt = A · y(t) with this initial condition is the same linear combination of
the “basic solutions” y1(t) and y2(t) namely:

y(t) = c1y1(t) + c2y2(t)

=
1

5
e4t · [c1

(

2
−6

)

+ c2

(

−1
3

)

] +
1

5
e−t[c1

(

3
6

)

+ c2

(

1
2

)

]

(Check for yourself that y(0) = c1e1 + c2e2 = c.)
The full set of differentiable maps f : R → C2 such that df/dt = A · f(t) is a 2-

dimensional subspace M in the ∞-dimensional space C∞(R, C2) of infinitely differentiable
vector valued maps:

M = C-span{y1(t),y2(t)} = {c1y1 + c2y2 : c1, c2 ∈ C}

and the “basic solutions” y1, ]bfy2 are a vector basis for M . One should check that y1,
y2 are linearly independent vectors in C∞(R, C2). But if there were coefficients α1, α2

such that α1y1(t)+α2y2(t) ≡ 0 in C2, and we take any convenient base point (say t = 0),
we would then have the following vector identity in C2:

(

0
0

)

=
α1

5
[
(

2
−6

)

+

(

3
6

)

] +
α2

5
[
(

−1
3

)

+

(

1
2

)

]

⇒
α1

5

(

5
0

)

+
α2

5

(

0
5

)

=

(

0
0

)

⇒ αe1 + α2e2 = 0

⇒ α1 = α2 = 0

as required. !

A similar discussion holds for equations dy/dt = A · y(t) when A is n × n (and
diagonalizable). If {y1(t), . . . ,yn(t)} ⊆ C∞(R, Cn) are the “basic solutions,” whose initial
values are yk(0) = ek (the standard basis vectors in Cn), then a solution with arbitrary
initial value y(0) =

∑n
k=1 ckek ∈ Cn is obtained by taking the same linear combination

y(t) = c1y1(t) + . . . + cnyn(t) .
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of basic solution yk(t). As above, the yk are linearly independent vectors in C∞(R, Cn):
if 0 =

∑

ckyk(t) in C∞(R, Cn) for all t, then (taking t = 0)
∑

ckek = 0 in Cn; thus,
c1 = c2 = . . . = cn = 0 because yk(0) = ek, by definition. We conclude that the {yk(t)}
are a basis for the full set of solutions (with arbitrary initial value) of the equation
dy/dt = A · y(t).

M =

{

f ∈ C∞ :
df

dt
= A · f(t) for all t ∈ R

}

(f : R → Cn) }

= C-span{y1(t), . . . ,yn(t)}

which has dimension dimC(M) = n. !
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